bbabanner.jpg

Filter by

Joint Content Valuations and Proactive Caching for Content Distribution Networks

Due to the advances in machine learning techniques, recommender systems nowadays are capable of learning and influencing the users' decisions. Hence, recommendations became an important facility to reduce the cost (or increase the profit) of the operators of the demand networks. In this paper we formulate and study the problem of dynamically optimizing the demand shaping, through content

Artificial Intelligence
Energy and Water
Circuit Theory and Applications
Software and Communications

Radio optical network simulation tool (ronst)

This paper presents a radio optical network simulation tool (RONST) for modeling optical-wireless systems. For a typical optical and electrical chain environment, performance should be optimized concurrently before system implementation. As a result, simulating such systems turns out to be a multidisciplinary problem. The governing equations are incompatible with co-simulation in the traditional

Software and Communications

Enhancing Parkinson's disease diagnosis accuracy through speech signal algorithm modeling

Parkinson's disease (PD), one of whose symptoms is dysphonia, is a prevalent neurodegenerative disease. The use of outdated diagnosis techniques, which yield inaccurate and unreliable results, continues to represent an obstacle in early-stage detection and diagnosis for clinical professionals in the medical field. To solve this issue, the study proposes using machine learning and deep learning

Software and Communications

Deep stacked ensemble learning model for COVID-19 classification

COVID-19 is a growing problem worldwide with a high mortality rate. As a result, the World Health Organization (WHO) declared it a pandemic. In order to limit the spread of the disease, a fast and accurate diagnosis is required. A reverse transcript polymerase chain reaction (RT-PCR) test is often used to detect the disease. However, since this test is time-consuming, a chest computed tomography

Software and Communications

S-shaped and V-shaped gaining-sharing knowledge-based algorithm for feature selection

In machine learning, searching for the optimal feature subset from the original datasets is a very challenging and prominent task. The metaheuristic algorithms are used in finding out the relevant, important features, that enhance the classification accuracy and save the resource time. Most of the algorithms have shown excellent performance in solving feature selection problems. A recently

Software and Communications

Hybrid NOMA-based ACO-FBMC/OQAM for next-generation indoor optical wireless communications using LiFi technology

Light fidelity (LiFi) has successfully achieved high data transfer rates, high security, great availability, and low interference. In this paper, we propose a LiFi system consisting of a combination of non-orthogonal multi-access (NOMA), asymmetrically-clipped optical (ACO), and filter bank multicarrier (FBMC) techniques combined with offset quadrature amplitude modulation (OQAM). The paper also

Software and Communications

Role of Artificial Intelligence in Diagnosis of Covid-19 Using CT-Scan

Machine learning (ML) and deep learning (DL) have been broadly used in our daily lives in different ways. Early detection of COVID-19 built on chest Computerized tomography CT empowers suitable management of patients and helps control the spread of the disease. We projected an artificial intelligence (AI) system for rapid COVID-19 detection using analysis of CTs of COVID-19 depending on the AI

Software and Communications

Graph transformer for communities detection in social networks

Graphs are used in various disciplines such as telecommunication, biological networks, as well as social networks. In large-scale networks, it is challenging to detect the communities by learning the distinct properties of the graph. As deep learning has made contributions in a variety of domains, we try to use deep learning techniques to mine the knowledge from large-scale graph networks. In this

Artificial Intelligence
Software and Communications

An optimized ensemble model for prediction the bandwidth of metamaterial antenna

Metamaterial Antenna is a special class of antennas that uses metamaterial to enhance their performance. Antenna size affects the quality factor and the radiation loss of the antenna. Metamaterial antennas can overcome the limitation of bandwidth for small antennas.Machine learning (ML)model is recently applied to predict antenna parameters.ML can be used as an alternative approach to the trial

Software and Communications

A Probabilistic City Model Generation for Application in Internet of Vehicles Technology

As the main pillar of the Smart City, Smart Highway manifests the centralized connectivity concept between the self-driving vehicles. Internet of Vehicle or IoV is the solution for improved connectivity between driverless vehicles. One of the major challenges in IoV research is the lack of datasets available. That is why the Internet of vehicles is one of the hot topics in research nowadays. IoV

Artificial Intelligence
Circuit Theory and Applications
Software and Communications
Mechanical Design