bbabanner.jpg

Filter by

CRC: Collaborative research and teaching testbed for wireless communications and networks

The validation of wireless communications research, whether it is focused on PHY, MAC or higher layers, can be done in several ways, each with its limitations. Simulations tend to be simplified. Equipping wireless labs requires funding and time. Remotely accessible testbeds present a good option to validate research. The existing testbeds have gone a long way in building the infrastructure for

Software and Communications

Protocol design and stability analysis of cooperative cognitive radio users

A single cognitive radio transmitter-receiver pair shares the spectrum with two primary users communicating with their respective receivers. Each primary user has a local traffic queue, whereas the cognitive user has three queues; one storing its own traffic while the other two are relaying queues used to store primary relayed packets admitted from the two primary users. A new cooperative

Software and Communications

RF energy harvesting in wireless networks with HARQ

In this paper, we consider a class of wireless powered communication networks using data link layer hybrid automatic repeat request (HARQ) protocol to ensure reliable communications. In particular, we analyze the trade-off between accumulating mutual information and accumulating RF energy at the receiver of a point-to-point link using HARQ with incremental redundancy over a Rayleigh fading channel

Software and Communications

Optimal energy allocation for delay-constrained traffic over fading multiple access channels

In this paper, we consider a multiple-access fading channel where N users transmit to a single base station (BS) within a limited number of time slots. We assume that each user has a fixed amount of energy available to be consumed over the transmission window. We derive the optimal energy allocation policy for each user that maximizes the total system throughput under two different assumptions on

Software and Communications

Analytical Markov model for slotted ALOHA with opportunistic RF energy harvesting

In this paper, we investigate the performance of an ALOHA random access wireless network consisting of nodes with and without RF energy harvesting capability. We develop and analyze a Markov model for the system when nodes with RF energy harvesting capability are infinitely backlogged. Our results indicate that the network throughput is improved when the conventional nodes are underloaded. On the

Energy and Water
Software and Communications
Innovation, Entrepreneurship and Competitiveness

Towards optimal power control for delay-constrained cognitive radio networks

In this paper we study the problem of optimal power control for a Z-interference channel abstracting an underlay cognitive radio network where the secondary user has delay constraints. More specifically, we minimize the packet drop probability at the secondary user (equivalent to delay bound violation probability) subject to quality of service (QoS) constraints at the primary and secondary users

Circuit Theory and Applications
Software and Communications

Interference-based optimal power-efficient access scheme for cognitive radio networks

In this paper, we propose a new optimization-based access strategy of multi-packet reception (MPR) channel for multiple secondary users (SUs) accessing the primary user (PU) spectrum. We devise an analytical model that realizes the multi-packet access strategy of the SUs. All the network receiving nodes have MPR capability. We aim at maximizing the throughput of the individual SUs subject to the

Circuit Theory and Applications
Software and Communications

Full-duplex cooperative cognitive radio networks

In this paper, we study the impact of a full-duplex secondary node on a cognitive cooperative network with Multipacket Reception (MPR) capabilities at the receivers. Motivated by recent schemes that make full-duplex communication feasible, we study a model with one primary and one secondary transmitter-receiver pair, where the secondary transmitter is able to relay primary unsuccessful packets

Circuit Theory and Applications
Software and Communications

Efficient spectrum access strategies for cognitive networks with general idle time statistics

In this paper we study the problem of secondary user channel access in cognitive radio networks. In particular, we address the problem of deciding the secondary user sensing vs. transmission at any point of time, assuming the availability of the primary user idle time statistics. Towards this objective, we make the following contributions. First, unlike prior work, we assume unconstrained general

Software and Communications

On the effective capacity of delay constrained cognitive radio networks with relaying capability

In this paper we analyze the performance of a secondary link in a cognitive radio relaying system operating under a statistical quality of service (QoS) delay constraint. In particular, we quantify analytically the Effective Capacity improvement for the secondary user when it offers a packet relaying service to the primary user packets that are lost under the SINR interference model. Towards this

Software and Communications