bbabanner.jpg

Filter by

LTE dynamic scheduling scheme for massive M2M and H2H communication

Machine-to-Machine (M2M) has become a generally used term owing to the concept of the Internet of Things (IOT). M2M communications have numerous areas of implementation such as medicine, transportation, environmental monitoring, and smart grids. As the field of its implementation extends, the number of M2M equipment are projected to grow proportionally in the upcoming few years. Current cellular

Software and Communications

Hybrid feedback-based access scheme for cognitive radio systems

In this paper, a cognitive radio system is studied in which the secondary user (SU) leverages the primary user (PU) channel quality indicator feedback (CQI) and the PU automatic repeat request (ARQ). The SU randomly accesses the PU channel with access probabilities based on its spectrum sensing outcome and the PU feedbacks. The SU's access probabilities are selected though an optimization problem

Software and Communications

Stability analysis of a cognitive radio system with a dedicated relay

In this paper, we characterize the stability region of cognitive radio networks with a dedicated relay node. In particular, we study this system under two different MAC protocols: perfect sensing and random access. In the perfect sensing protocol, the relay node and the secondary user access the medium only when the primary user is idle. In the random access protocol, both the relay and the

Software and Communications

Degrees of freedom in cached MIMO relay networks with multiple base stations

The ability of physical layer relay caching to increase the degrees of freedom (DoF) of a single cell was recently illustrated. In this paper, we extend this result to the case of multiple cells in which a caching relay is shared among multiple non-cooperative base stations (BSs). In particular, we show that a large DoF gain can be achieved by exploiting the benefits of having a shared relay that

Software and Communications

Degrees of Freedom of the Full-Duplex Asymmetric MIMO Three-Way Channel with Unicast and Broadcast Messages

In this paper, we characterize the total degrees of freedom (DoFs) of the full-duplex asymmetric multiple-input multiple- output (MIMO) three-way channel. Each node has a separate-antenna full-duplex MIMO transceiver with a different number of antennas, where each antenna can be configured for either signal transmission or reception. We study this system under two message configurations; the first

Software and Communications

Topology realization using gain control for wireless testbeds

Wireless testbeds present a convenient and cost effective option for researchers in communications to validate their work. The main drawback of these testbeds is their reliance on nodes with fixed placement; this limits experimenters ability to test protocols that depend on a complex connectivity between the nodes such as relaying. In this work, we present a way to overcome this limitation; this

Software and Communications

Asymmetric degrees of freedom of the full-duplex MIMO 3-way channel

In this paper, we characterize the asymmetric total degrees of freedom (DoF) of a multiple-input multiple-output (MIMO) 3-way channel. Each node has a separate-antenna full-duplex MIMO transceiver with a different number of antennas, where each antenna can be configured for either signal transmission or reception. Each node has two unicast messages to be delivered to the two other nodes. We first

Software and Communications
Mechanical Design

Achievable degrees of freedom of the K-user MISO broadcast Channel with alternating CSIT via interference creation-resurrection

Channel state information at the transmitter affects the degrees of freedom of the wireless networks. In this paper, we analyze the DoF for the K-user multiple-input single-output (MISO) broadcast channel (BC) with synergistic alternating channel state information at the transmitter (CSIT). Specifically, the CSIT of each user alternates between three states, namely, perfect CSIT (P), delayed CSIT

Software and Communications

Maximum Secondary Stable Throughput of a Cooperative Secondary Transmitter-Receiver Pair: Protocol Design and Stability Analysis

In this paper, we investigate the impact of cooperation between a secondary transmitter-receiver pair and a primary transmitter on the maximum stable throughput of the primary-secondary network. Each transmitter, either primary or secondary, has a buffer for storing its own traffic. In addition to its own buffer, the secondary transmitter has a buffer for storing a fraction of the undelivered

Software and Communications

A novel framework for scalable video streaming over multi-channel multi-radio wireless mesh networks

In this paper, we study the problem of scalable videos multicast streaming over multi-channel multi-radio wireless mesh networks over a contention-based MAC, with the objective of maximizing the overall received videos quality. We propose a three-stage heuristic framework solution for the complex joint channel assignment, video quality selection and multicast routing problem. That framework is

Software and Communications