bbabanner.jpg

Filter by

A Queueing Theory Approach to Small-Cell Assisted IoT Traffic Offloading

Massive numbers of Internet of Things (IoT) connections represent an essential component of the next-generation wireless networks. However, catering for such unprecedented numbers via cellular networks significantly increases the network congestion and degrades the achievable quality of service (QoS). Hence, traffic offloading has been proposed to alleviate the expected high growth rate in

Software and Communications

Optimization of energy-constrained wireless powered communication networks with heterogeneous nodes

In this paper, we generalize conventional time division multiple access (TDMA) wireless networks to a new type of wireless networks coined generalized wireless powered communication networks (g-WPCNs). Our prime objective is to optimize the design of g-WPCNs where nodes are equipped with radio frequency (RF) energy harvesting circuitries along with constant energy supplies. This constitutes an

Software and Communications

Network Coded Cooperation Receiver with Analog XOR Mapping for Enhanced BER

In this paper, we propose a novel physical layer decoding technique for Device-to-Device Network Coded Cooperation (NCC) receivers in the Two Way Relay Channel (TWRC) scenario. The proposed technique is efficiently applicable either when Channel State Information (CSI) are available at the receiver or not. It first employs XOR arithmetic analog mapping to extract a distorted version of the

Software and Communications
Innovation, Entrepreneurship and Competitiveness

Cache-aided heterogeneous networks: Coverage and delay analysis

This paper characterizes the performance of a generic K-tier cache-aided heterogeneous network (CHN), in which the base stations (BSS) across tiers differ in terms of their spatial densities, transmission powers, pathloss exponents, activity probabilities conditioned on the serving link and placement caching strategies. We consider that each user connects to the BS which maximizes its average

Software and Communications

Towards optimal resource allocation in caching at relay networks

We investigate the performance of caching in relay networks where an intermediate relay station (RS) caches content for future demand by end users. With uncertain user demand over multiple data items and dynamically changing wireless links, we characterize the optimal transmission time for serving data items, cached data portion allocation of relay station and optimal service portion, which

Circuit Theory and Applications
Software and Communications

On Optimal Dynamic Caching in Relay Networks

We investigate dynamic content caching in relay networks where an intermediate relay station (RS) can adaptively cache data content based on their varying popularity. With the objective of minimizing the time average cost of content delivery, we formulate and study the problem of optimal RS cache allocation when the popularities of data content are unknown apriori to the network. While optimal

Software and Communications

Cache-aided fog radio access networks with partial connectivity

Centralized coded caching and delivery is studied for a partially-connected fog radio access network (F-RAN), whereby a set of H edge nodes (ENs) (without caches), connected to a cloud server via orthogonal fronthaul links, serve K users over the wireless edge. The cloud server is assumed to hold a library of N files, each of size F bits; and each user, equipped with a cache of size MF bits, is

Software and Communications

Optimal uplink and downlink resource allocation for wireless powered cellular networks

In this paper, we characterize optimal resource allocation for the uplink and downlink of wireless powered cellular networks (WPCNs). In particular, we investigate a time-slotted WPCN, where a hybrid access point (HAP) is in charge of energy replenishing of M cellular users (CUs), along with transmission/reception of information to/from them. Unlike prior works, which give attention to information

Software and Communications

SWIPT Using Hybrid ARQ over Time Varying Channels

We consider a class of wireless powered devices employing hybrid automatic repeat request to ensure reliable end-to-end communications over a two-state time-varying channel. A receiver, with no power source, relies on the energy transferred by a simultaneous wireless information and power transfer enabled transmitter to receive and decode information. Under the two-state channel model, information
Software and Communications
Innovation, Entrepreneurship and Competitiveness

IoT Agile Framework Enhancement

Internet of Things (IoT) is considered as a trend nowadays. Devices connected to the internet interact with surrounding; this poses strong challenges in handling big data with a certain level of security. In this paper IoT devices will be divided in to two categories high vulnerability devices and low vulnerability devices. The classification depends on the ease of attacks. In order to ensure the

Artificial Intelligence
Circuit Theory and Applications
Software and Communications